Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.

Identifieur interne : 000A35 ( Main/Exploration ); précédent : 000A34; suivant : 000A36

Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.

Auteurs : Luca Issi [États-Unis] ; Rhys A. Farrer [États-Unis] ; Kelly Pastor [États-Unis] ; Benjamin Landry [États-Unis] ; Toni Delorey [États-Unis] ; George W. Bell [États-Unis] ; Dawn A. Thompson [États-Unis] ; Christina A. Cuomo [États-Unis] ; Reeta P. Rao [États-Unis]

Source :

RBID : pubmed:27932543

Descripteurs français

English descriptors

Abstract

Almost all humans are colonized with Candida albicans However, in immunocompromised individuals, this benign commensal organism becomes a serious, life-threatening pathogen. Here, we describe and analyze the regulatory networks that modulate innate responses in the host niches. We identified Zcf15 and Zcf29, two Zinc Cluster transcription Factors (ZCF) that are required for C. albicans virulence. Previous sequence analysis of clinical C. albicans isolates from immunocompromised patients indicates that both ZCF genes diverged during clonal evolution. Using in vivo animal models, ex vivo cell culture methods, and in vitro sensitivity assays, we demonstrate that knockout mutants of both ZCF15 and ZCF29 are hypersensitive to reactive oxygen species (ROS), suggesting they help neutralize the host-derived ROS produced by phagocytes, as well as establish a sustained infection in vivo Transcriptomic analysis of mutants under resting conditions where cells were not experiencing oxidative stress revealed a large network that control macro and micronutrient homeostasis, which likely contributes to overall pathogen fitness in host niches. Under oxidative stress, both transcription factors regulate a separate set of genes involved in detoxification of ROS and down-regulating ribosome biogenesis. ChIP-seq analysis, which reveals vastly different binding partners for each transcription factor (TF) before and after oxidative stress, further confirms these results. Furthermore, the absence of a dominant binding motif likely facilitates their mobility, and supports the notion that they represent a recent expansion of the ZCF family in the pathogenic Candida species. Our analyses provide a framework for understanding new aspects of the interface between C. albicans and host defense response, and extends our understanding of how complex cell behaviors are linked to the evolution of TFs.

DOI: 10.1534/genetics.116.195024
PubMed: 27932543
PubMed Central: PMC5289837


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.</title>
<author>
<name sortKey="Issi, Luca" sort="Issi, Luca" uniqKey="Issi L" first="Luca" last="Issi">Luca Issi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Farrer, Rhys A" sort="Farrer, Rhys A" uniqKey="Farrer R" first="Rhys A" last="Farrer">Rhys A. Farrer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Broad Institute of MIT and Harvard, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pastor, Kelly" sort="Pastor, Kelly" uniqKey="Pastor K" first="Kelly" last="Pastor">Kelly Pastor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Landry, Benjamin" sort="Landry, Benjamin" uniqKey="Landry B" first="Benjamin" last="Landry">Benjamin Landry</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Delorey, Toni" sort="Delorey, Toni" uniqKey="Delorey T" first="Toni" last="Delorey">Toni Delorey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bell, George W" sort="Bell, George W" uniqKey="Bell G" first="George W" last="Bell">George W. Bell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Whitehead Institute for Biomedical Research, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Dawn A" sort="Thompson, Dawn A" uniqKey="Thompson D" first="Dawn A" last="Thompson">Dawn A. Thompson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Broad Institute of MIT and Harvard, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Broad Institute of MIT and Harvard, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rao, Reeta P" sort="Rao, Reeta P" uniqKey="Rao R" first="Reeta P" last="Rao">Reeta P. Rao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609 rpr@wpi.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Worcester Polytechnic Institute</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27932543</idno>
<idno type="pmid">27932543</idno>
<idno type="doi">10.1534/genetics.116.195024</idno>
<idno type="pmc">PMC5289837</idno>
<idno type="wicri:Area/Main/Corpus">000D31</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D31</idno>
<idno type="wicri:Area/Main/Curation">000D31</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D31</idno>
<idno type="wicri:Area/Main/Exploration">000D31</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.</title>
<author>
<name sortKey="Issi, Luca" sort="Issi, Luca" uniqKey="Issi L" first="Luca" last="Issi">Luca Issi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Farrer, Rhys A" sort="Farrer, Rhys A" uniqKey="Farrer R" first="Rhys A" last="Farrer">Rhys A. Farrer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Broad Institute of MIT and Harvard, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pastor, Kelly" sort="Pastor, Kelly" uniqKey="Pastor K" first="Kelly" last="Pastor">Kelly Pastor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Landry, Benjamin" sort="Landry, Benjamin" uniqKey="Landry B" first="Benjamin" last="Landry">Benjamin Landry</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Delorey, Toni" sort="Delorey, Toni" uniqKey="Delorey T" first="Toni" last="Delorey">Toni Delorey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Worcester Polytechnic Institute</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bell, George W" sort="Bell, George W" uniqKey="Bell G" first="George W" last="Bell">George W. Bell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Whitehead Institute for Biomedical Research, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Thompson, Dawn A" sort="Thompson, Dawn A" uniqKey="Thompson D" first="Dawn A" last="Thompson">Dawn A. Thompson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Broad Institute of MIT and Harvard, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Broad Institute of MIT and Harvard, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rao, Reeta P" sort="Rao, Reeta P" uniqKey="Rao R" first="Reeta P" last="Rao">Reeta P. Rao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Worcester Polytechnic Institute, Massachusetts 01609 rpr@wpi.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Worcester Polytechnic Institute</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Caenorhabditis elegans (metabolism)</term>
<term>Caenorhabditis elegans (microbiology)</term>
<term>Candida albicans (genetics)</term>
<term>Candida albicans (pathogenicity)</term>
<term>Cell Line (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Macrophages (metabolism)</term>
<term>Macrophages (microbiology)</term>
<term>Mice (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Ribosomes (genetics)</term>
<term>Ribosomes (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcriptome (MeSH)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Caenorhabditis elegans (microbiologie)</term>
<term>Caenorhabditis elegans (métabolisme)</term>
<term>Candida albicans (génétique)</term>
<term>Candida albicans (pathogénicité)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Macrophages (microbiologie)</term>
<term>Macrophages (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Ribosomes (génétique)</term>
<term>Ribosomes (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Candida albicans</term>
<term>Host-Pathogen Interactions</term>
<term>Ribosomes</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Candida albicans</term>
<term>Facteurs de transcription</term>
<term>Interactions hôte-pathogène</term>
<term>Protéines fongiques</term>
<term>Ribosomes</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Caenorhabditis elegans</term>
<term>Fungal Proteins</term>
<term>Macrophages</term>
<term>Reactive Oxygen Species</term>
<term>Ribosomes</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Caenorhabditis elegans</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Caenorhabditis elegans</term>
<term>Espèces réactives de l'oxygène</term>
<term>Facteurs de transcription</term>
<term>Macrophages</term>
<term>Protéines fongiques</term>
<term>Ribosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Mice</term>
<term>Oxidative Stress</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Lignée cellulaire</term>
<term>Souris</term>
<term>Stress oxydatif</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Almost all humans are colonized with Candida albicans However, in immunocompromised individuals, this benign commensal organism becomes a serious, life-threatening pathogen. Here, we describe and analyze the regulatory networks that modulate innate responses in the host niches. We identified Zcf15 and Zcf29, two Zinc Cluster transcription Factors (ZCF) that are required for C. albicans virulence. Previous sequence analysis of clinical C. albicans isolates from immunocompromised patients indicates that both ZCF genes diverged during clonal evolution. Using in vivo animal models, ex vivo cell culture methods, and in vitro sensitivity assays, we demonstrate that knockout mutants of both ZCF15 and ZCF29 are hypersensitive to reactive oxygen species (ROS), suggesting they help neutralize the host-derived ROS produced by phagocytes, as well as establish a sustained infection in vivo Transcriptomic analysis of mutants under resting conditions where cells were not experiencing oxidative stress revealed a large network that control macro and micronutrient homeostasis, which likely contributes to overall pathogen fitness in host niches. Under oxidative stress, both transcription factors regulate a separate set of genes involved in detoxification of ROS and down-regulating ribosome biogenesis. ChIP-seq analysis, which reveals vastly different binding partners for each transcription factor (TF) before and after oxidative stress, further confirms these results. Furthermore, the absence of a dominant binding motif likely facilitates their mobility, and supports the notion that they represent a recent expansion of the ZCF family in the pathogenic Candida species. Our analyses provide a framework for understanding new aspects of the interface between C. albicans and host defense response, and extends our understanding of how complex cell behaviors are linked to the evolution of TFs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27932543</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>205</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.</ArticleTitle>
<Pagination>
<MedlinePgn>559-576</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.116.195024</ELocationID>
<Abstract>
<AbstractText>Almost all humans are colonized with Candida albicans However, in immunocompromised individuals, this benign commensal organism becomes a serious, life-threatening pathogen. Here, we describe and analyze the regulatory networks that modulate innate responses in the host niches. We identified Zcf15 and Zcf29, two Zinc Cluster transcription Factors (ZCF) that are required for C. albicans virulence. Previous sequence analysis of clinical C. albicans isolates from immunocompromised patients indicates that both ZCF genes diverged during clonal evolution. Using in vivo animal models, ex vivo cell culture methods, and in vitro sensitivity assays, we demonstrate that knockout mutants of both ZCF15 and ZCF29 are hypersensitive to reactive oxygen species (ROS), suggesting they help neutralize the host-derived ROS produced by phagocytes, as well as establish a sustained infection in vivo Transcriptomic analysis of mutants under resting conditions where cells were not experiencing oxidative stress revealed a large network that control macro and micronutrient homeostasis, which likely contributes to overall pathogen fitness in host niches. Under oxidative stress, both transcription factors regulate a separate set of genes involved in detoxification of ROS and down-regulating ribosome biogenesis. ChIP-seq analysis, which reveals vastly different binding partners for each transcription factor (TF) before and after oxidative stress, further confirms these results. Furthermore, the absence of a dominant binding motif likely facilitates their mobility, and supports the notion that they represent a recent expansion of the ZCF family in the pathogenic Candida species. Our analyses provide a framework for understanding new aspects of the interface between C. albicans and host defense response, and extends our understanding of how complex cell behaviors are linked to the evolution of TFs.</AbstractText>
<CopyrightInformation>Copyright © 2017 by the Genetics Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Issi</LastName>
<ForeName>Luca</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Farrer</LastName>
<ForeName>Rhys A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pastor</LastName>
<ForeName>Kelly</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Landry</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Delorey</LastName>
<ForeName>Toni</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Worcester Polytechnic Institute, Massachusetts 01609.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bell</LastName>
<ForeName>George W</ForeName>
<Initials>GW</Initials>
<AffiliationInfo>
<Affiliation>Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>Dawn A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cuomo</LastName>
<ForeName>Christina A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rao</LastName>
<ForeName>Reeta P</ForeName>
<Initials>RP</Initials>
<Identifier Source="ORCID">0000-0001-7936-9617</Identifier>
<AffiliationInfo>
<Affiliation>Worcester Polytechnic Institute, Massachusetts 01609 rpr@wpi.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>U19 AI110818</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="N">Caenorhabditis elegans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012270" MajorTopicYN="N">Ribosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Candida albicans</Keyword>
<Keyword MajorTopicYN="Y">ZCF transcription factors</Keyword>
<Keyword MajorTopicYN="Y">clonal evolution</Keyword>
<Keyword MajorTopicYN="Y">gene duplication and expansion</Keyword>
<Keyword MajorTopicYN="Y">host interactions</Keyword>
<Keyword MajorTopicYN="Y">virulence</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27932543</ArticleId>
<ArticleId IdType="pii">genetics.116.195024</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.116.195024</ArticleId>
<ArticleId IdType="pmc">PMC5289837</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 2003 Sep;71(9):5344-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12933882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1351-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1972-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21731485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Feb 13;355(6361):601-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1538747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 2;291(5505):878-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Jun 18;2:e00603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23795289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 Nov 29;27(24):8706-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3242600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jul;9(7):1647-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17346314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Apr;100(2):328-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26700268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2003 Jun;43(3):139-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12715202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2012 Sep;14(9):1319-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Aug;8(8):1218-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2013 Jan 1;4(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23314569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Jan;12(1):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23143683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):1877-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 1998 Dec;1(6):687-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Jan 20;148(1-2):126-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22265407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1979 Dec;140(3):874-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">391804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2013 Feb 15;4(2):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23302789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Mar 10;296(5):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10698627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Nov;69(11):6813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 15;27(12):1696-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 1998 Sep;8(9):348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9728395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Jun;30(6):1281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 May;55(5):2212-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2002;56:139-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2013 Mar;159(Pt 3):565-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23306673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Apr;7(4):610-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2001 Dec;4(6):728-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11731326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:369-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21568704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2014 Nov;22(11):614-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25088819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Oct;34(1):169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10540295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Feb;1783(2):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Jun;23(6):1039-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23640720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(11):e1003326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24244136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Nov;8(11):1750-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Oct;22(10):2008-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2012 Nov;12(21):3164-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22997008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Apr 18;446(4):1073-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Oct;12(10):2987-3003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Jul;42(7):590-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 23;440(7083):545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16554821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stem Cell. 2010 Oct 8;7(4):532-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20887958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2007 May;37(5):1194-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2007 Jun;75(6):2922-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17371861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2009 Jan;77(1):405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18981256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Oct;3(5):1076-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Feb 03;4:e00662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25646566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 15;26(6):841-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Aug 19;6(8):e1001070</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Jun;44(6):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17178245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Jan;182(2):320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Apr;10(4):372-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2004 Apr;82(2):196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15061774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 3;293(5531):880-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11486091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Apr 1;40(7):1201-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16545688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1998 May;66(5):1953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 1;28(11):1530-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22539670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jan;29(1):24-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21221095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Sep;89(5):1003-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23844834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):708-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2005;6(7-8):345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2005;1:2005.0013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16729048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Toxicol Pathol. 2005 Jul;57 Suppl 1:189-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16092727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Feb 15;20(4):435-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16449570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 15;27(8):1164-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26962</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22073120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Sep 14;20(17):R735-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Sep;53(5):1451-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15387822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Aug 16;13:396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22897889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Apr;78(7):2075-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Oct;6(10):1736-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Mar 18;144(6):940-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21414485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Feb;6(2):280-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Oct;1(5):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Jan;5(1):e1000279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19180182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12 ):e1000227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2009 Mar;29(3):817-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Jun;7(6):e1000133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19529758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(1):240-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Res. 2002;26(1-3):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12403349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Jun 1;23(11):1351-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19487574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 1995 Dec;82-83:969-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8597169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 1999 Mar;112(3):383-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10084319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2010;708:105-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21528695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 May;11(5):2723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2017175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D667-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2006 Feb;17(2):1018-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2009 Nov;77(11):4983-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19687201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 May;55(5):2061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21343453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 4;459(7247):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 23;6(2):e17046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21407800</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Issi, Luca" sort="Issi, Luca" uniqKey="Issi L" first="Luca" last="Issi">Luca Issi</name>
</region>
<name sortKey="Bell, George W" sort="Bell, George W" uniqKey="Bell G" first="George W" last="Bell">George W. Bell</name>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
<name sortKey="Delorey, Toni" sort="Delorey, Toni" uniqKey="Delorey T" first="Toni" last="Delorey">Toni Delorey</name>
<name sortKey="Farrer, Rhys A" sort="Farrer, Rhys A" uniqKey="Farrer R" first="Rhys A" last="Farrer">Rhys A. Farrer</name>
<name sortKey="Landry, Benjamin" sort="Landry, Benjamin" uniqKey="Landry B" first="Benjamin" last="Landry">Benjamin Landry</name>
<name sortKey="Pastor, Kelly" sort="Pastor, Kelly" uniqKey="Pastor K" first="Kelly" last="Pastor">Kelly Pastor</name>
<name sortKey="Rao, Reeta P" sort="Rao, Reeta P" uniqKey="Rao R" first="Reeta P" last="Rao">Reeta P. Rao</name>
<name sortKey="Thompson, Dawn A" sort="Thompson, Dawn A" uniqKey="Thompson D" first="Dawn A" last="Thompson">Dawn A. Thompson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A35 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A35 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27932543
   |texte=   Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27932543" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020